A normalized basis for quintic Powell-Sabin splines
نویسنده
چکیده
We construct a suitable normalized B-spline representation for C-continuous quintic Powell-Sabin splines. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction is based on the determination of a set of triangles that must contain a specific set of points. We are able to define control points and cubic control polynomials which are tangent to the spline surface. We also show how to compute the Bézier control net of such a spline in a stable way.
منابع مشابه
Computer aided geometric design with Powell-Sabin splines
Powell-Sabin splines are C-continuous quadratic splines defined on an arbitrary triangulation. Their construction is based on a particular split of each triangle in the triangulation into six smaller triangles. In this article we give an overview of the properties of Powell-Sabin splines in the context of computer aided geometric design. These splines can be represented in a compact normalized ...
متن کاملOn the Lp-stability of quasi-hierarchical Powell-Sabin B-splines
Quasi-hierarchical Powell-Sabin splines are C-continuous quadratic splines defined on a locally refined hierarchical triangulation. They admit a compact representation in a normalized B-spline basis. We prove that the quasi-hierarchical basis is in general weakly Lpstable, but for a broad class of hierarchical triangulations it is even strongly Lp-stable.
متن کاملIsogeometric analysis with Powell-Sabin splines
This paper presents the use of Powell-Sabin splines in the context of isogeometric analysis for the numerical solution of advectiondiffusion-reaction equations. Powell-Sabin splines are piecewise quadratic C functions defined on a given triangulation with a particular macro-structure. We discuss the Galerkin discretization based on a normalized Powell-Sabin B-spline basis. We focus on the accur...
متن کاملOn the graphical display of Powell-Sabin splines: a comparison of three piecewise linear approximations
Powell-Sabin splines are C-continuous piecewise quadratic polynomials defined on arbitrary triangulations. They admit a compact representation in a normalized B-spline basis with a geometric interpretation involving control triangles. This paper discusses several piecewise linear approximations for the graphical display of PowellSabin splines. We analyse their approximation error to the spline ...
متن کاملMultivariate normalized Powell-Sabin B-splines and quasi-interpolants
We present the construction of a multivariate normalized B-spline basis for the quadratic C-continuous spline space defined over a triangulation in R (s ≥ 1) with a generalized Powell-Sabin refinement. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction can be interpreted geometrically as the determination of a set of s-simplices ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Aided Geometric Design
دوره 27 شماره
صفحات -
تاریخ انتشار 2010